Издаётся с сентября 1923 года
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
  • Прочность композитов на основе модифицированного портландцемента, активированного в аппарате вихревого слоя
  • УДК 691.542 DOI: 10.33622/0869-7019.2021.01.35-41
    Руслан Абдирашитович ИБРАГИМОВ, кандидат технических наук, доцент, e-mail: rusmag007@yandex.ru
    ФГБОУ ВО «Казанский государственный архитектурно-строительный университет», 420043 Казань, ул. Зеленая, 1
    Евгений Валерьевич КОРОЛЕВ, доктор технических наук, профессор, проректор по учебно-методической работе, e-mail: korolevev@nocnt.ru
    ФГБОУ ВО «Санкт-Петербургский государственный архитектурно-строительный университет» (СПбГАСУ), 190005 Санкт-Петербург, 2-я Красноармейская ул., 4
    Аннотация. Строительные материалы c заданными эксплуатационными свойствами в настоящее время продолжают сохранять свою актуальность. Методы проектирования данных материалов основываются на управлении их структурообразованием. Один из способов формирования цементных композитов с параметрами структуры, обеспечивающими высокие эксплуатационные свойства, - введение первичных наноразмерных материалов. Для таких материалов характерны сложности при их диспергировании в среде-носителе, что особенно четко проявляется у лиофобных материалов. Часто применяют физико-химический метод диспергирования (введение поверхностно-активных веществ и ультразвуковая обработка), который ограниченно эффективен вследствие условий, связанных с обратимостью физической адсорбции поверхностно-активного вещества при повышении температуры. В данной работе представлены результаты исследования влияния на прочность бетона портландцемента, модифицированного углеродными нанотрубками и подвергнутого обработке в аппарате вихревого слоя. Обработка в указанном аппарате проводилась для диспергирования углеродных нанотрубок и физической активации поверхности частиц портландцемента. Установлено, что применение такого портландцемента совместно с пластификатором при дополнительном введении углеродных нанотрубок позволяет значительно повысить прочность при сжатии цементных композитов как в ранние сроки твердения, так и на 28-е сутки твердения по сравнению с контрольным составом.
    Ключевые слова: углеродные нанотрубки, активация, аппарат вихревого слоя, прочность, первичные наноразмерные материалы, портландцемент, цементные композиты.
  • ЛИТЕРАТУРА 1. Azeem M., Azhar Saleem M. Role of electrostatic potential energy in carbon nanotube augmented cement paste matrix [Роль электростатической потенциальной энергии в матрице цементного теста, усиленной углеродными нанотрубками]. Construction and Building Materials, 2020, no. 239, pp. 117875.
    2. Sanchez F., Sobolev K. Nanotechnology in concrete - a review [Нанотехнологии в бетоне - обзор]. Construction and Building Materials, 2010, no. 24, pp. 2060-2071.
    3. Brown L., Sanchez F. Influence of carbon nanofiber clustering in cement pastesexposed to sulfate attack [Влияние кластеризации углеродных нановолокон в цементной пасте, подверженной сульфатной коррозии]. Construction and Building Materials, 2018, no. 166, pp. 181-187.
    4. Nochaiya T., Chaipanich A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials [Влияние многостенных углеродных нанотрубок на пористость и микроструктуру материалов на основе цемента]. Applied Surface Science, 2011, no. 257(6), pp. 1941-1945. Available at: https://doi.org/10.1016/j.apsusc.2010.09.030 (accessed 27.11.2020).
    5. Konsta-Gdoutos M. S., Metaxa Z. S., Shah S. P. Highly dispersed carbon nanotube reinforced cement based materials [Материалы на основе цемента, армированные высокодисперсными углеродными нанотрубками]. Cement and Concrete Research, 2010, no. 40(7), pp. 1052-1059. Available at: https://doi.org/10.1016/j.cemconres.2010.02.015 (accessed 27.11.2020).
    6. Li G. Y., Wang P. M., Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes [Механическое поведение и микроструктура цементных композитов, включающих многослойные углеродные нанотрубки с обработанной поверхностью]. Carbon, 2005, no. 43(6), pp. 1239. Available at: https://doi.org/10.1016/j.carbon.2004.12.017 (accessed 27.11.2020).
    7. Makar J. M., Chan G. W. Growth of cement hydration products on single-walled carbon nanotubes [Рост продуктов гидратации цемента на однослойных углеродных нанотрубках]. Journal of the American Ceramic Society, 2009, no. 92(6), pp. 1303-1310. Available at: https://doi.org/10.1111/j.1551-2916.2009.03055.x (accessed 27.11.2020).
    8. Konsta-Gdoutos M. S., Metaxa Z. S., Shah S. P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites [Многоуровневые механические характеристики и характеристики разрушения и способность к деформации в раннем возрасте высокоэффективных углеродных нанотрубок / цементных нанокомпозитов]. Cement and Concrete Composites, 2010, no. 32(2), pp. 110-115. Available at: https://doi.org/10.1016/j.cemconcomp.2009.10.007 (accessed 27.11.2020).
    9. Galao O., Zornoza E., Baeza F. J., Bernabeu A., Garces P. Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials [Влияние добавления углеродных нановолокон на механические свойства и долговечность вяжущих материалов]. Materiales de Construcciуn, 2012, no. 62(307). Available at: https://doi.org/10.3989/mc.2012.01211 (accessed 27.11.2020).
    10. Stephens C., Brown L., Sanchez F. Quantification of the re-agglomeration of carbon nanofiber aqueous dispersion in cement pastes and effect on the early age flexural response [Количественная оценка повторной агломерации водной дисперсии углеродных нановолокон в цементных пастах и их влияние на реакцию на изгиб в раннем возрасте]. Carbon, 2016, no. 107, pp. 482-500. Available at: https://doi.org/10.1016/j.carbon.2016.05.076 (accessed 27.11.2020).
    11. Gay C., Sanchez F. Performance of carbon nanofibers/cementitious composites with a high-range water-reducer [Характеристики углеродных нановолокон / цементных композитов с высоким водоредуктором]. Transportation Research Record: Journal of the Transportation Research Board, 2010, no. 2142(2), pp. 109-113. Available at: https://doi.org/10.3141/2142-16 (accessed 27.11.2020).
    12. Brown L., Sanchez F. Influence of carbon nanofiber clustering on the chemomechanical behavior of cement pastes [Влияние кластеризации углеродных нановолокон на химико-механическое поведение цементных паст]. Cement and Concrete Composites, 2016, no. 65, pp. 101-109. Available at: https://doi.org/10.1016/j.cemconcomp.2015.10.008 (accessed 27.11.2020).
    13. Tsukahara Y., Yamauchi T., Kawamoto T., Wada Y. Functionalization of multi-walled carbon nanotubes realized by microwave-driven chemistry inducing dispersibility in liquid media [Функционализация многослойных углеродных нанотрубок, реализуемая с помощью химии, управляемой микроволновым излучением, вызывающей диспергируемость в жидких средах]. Bulletin of the Chemical Society of Japan, 2008, no. 81, pp. 387-392.
    14. Ibragimov R., Izotov V. Effect of carbon nanotubes on the structure and properties of cement composites [Влияние углеродных нанотрубок на структуру и свойства цементных композиций]. Inorganic Materials, 2015, no. 8(51), pp. 834-839.
    15. Bazhenov A., Fursova T., Grazhulene S., Red'kin A., Telegin G. Sorption of metal ions on multi-walled carbon nanotubes [Сорбция ионов металлов на многослойных углеродных нанотрубках]. Fullerenes. Nanotubes and Carbon Nanostructures, 2010, no. 4-6(18), pp. 564-568.
    16. Kirikova M., Ivanov A., Savilov S., Lunin V. Modification of multiwalled carbon nanotubes by carboxy groups and determination of the degree of functionalization [Модификация многослойных углеродных нанотрубок карбоксильными группами и определение степени функционализации]. Russian Chemical Bulletin, 2008, no. 2(57), pp. 298-303.
    17. Xiang Zhang, Naiqin Zhao, Chunnian He. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design - a review [Превосходные механические и физические свойства объемных композитов, армированных наноуглеродом, достигнутые архитектурным проектированием - обзор]. Progress in Materials Science, 2020, vol. 113, pp. 100672.
    18. Ali Naqi et al. Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials [Влияние многостенных углеродных нанотрубок (MWCNT) на рост прочности вяжущих материалов]. Journal of Materials Research and Technology, 2019, vol. 8(1), pp. 1203-1211.
    19. Yue Li, Hongwen Li, Zigeng Wang, CaiyunJin. Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C-S-H gel [Эффект и анализ механизма функционализированных многостенных углеродных нанотрубок (MWCNTs) на геле C-S-H]. Cement and Concrete Research, 2020, vol. 128, p. 105955.
    20. Luo J., Duan Z., Li H. The influence of surfactants on the processing of multiwalled carbon nanotubes in reinforced cement matrix composites [Влияние поверхностно-активных веществ на обработку многослойных углеродных нанотрубок в композитах с армированной цементной матрицей]. Physica Status Solidi A, 2009, no. 206(12), pp. 2783-2790. Available at: https://doi.org/10.1002/pssa.200824310 (accessed 27.11.2020).
    21. Gaurang R. Vesmawala, Ajaysinh R. Vaghela, K. D. Yadav, Yogesh Patil. Effectiveness of polycarboxylate as a dispersant of carbon nanotubes in concrete [Эффективность поликарбоксилата в качестве диспергатора углеродных нанотрубок в бетоне]. Materials Today: Proceedings, 2020, vol. 28, pp. 1170-1174.
    22. Stroganov V., Sagadeev E., Ibragimov R., Potapova L. Mechanical activation effect on the biostability of modified cement compositions [Влияние механической активации на биостойкость модифицированных цементных композиций]. Construction and Building Materials, 2020, no. 246, p. 118506.
    23. Guo-jian Jing, Zheng-mao Ye, Cheng Li, Jian Cui, Xin Cheng. A ball milling strategy to disperse graphene oxide in cement composites [Стратегия шаровой мельницы для диспергирования оксида графена в цементных композитах]. New Carbon Materials, 2019, vol. 34(615), pp. 569-577.
    24. Ibragimov R. A., Korolev E. V., Deberdeev T. R., Leksin V. V. Efficient complex activation of Portland cement through processing it in the vortex layer machine [Эффективная комплексная активация портландцемента путем его обработки в аппарате вихревого слоя]. Structural Concrete, 2019, no. 20(2), pp. 851-859.
    25. Mischenko M., Bokov M., Grishaev M. Activation of technological processes of materials in the device rotary electromagnetic field [Активация технологических процессов материалов в устройстве с вращающимся электромагнитным полем]. Technical Sciences, 2015, no. 2, pp. 3508-3512.
    26. Патент РФ № 2667180. Способ приготовления бетонной смеси / Дебердеев Т. Р., Ибрагимов Р. А., Дебердеев Р. Я., Лексин В. В., Королев Е. В. Oпубл. 17.09.2018. Бюл. № 26. 5 с.
  • Для цитирования: Ибрагимов Р. А., Королев Е. В. Прочность композитов на основе модифицированного портландцемента, активированного в аппарате вихревого слоя // Промышленное и гражданское строительство. 2021. № 1. С. 35-41. DOI: 10.33622/0869-7019.2021.01.35-41.


НАЗАД