Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • STRUCTURAL MECHANICS
  • About Development Of Computational Schemes Of Some Additional Constraints For Elastic Systems. Part 2: Samples Of Analysis
  • UDC 624.04:539.3
    doi: 10.33622/0869-7019.2022.09.11-19
    Leonid S. LYAKHOVICH1, lls@tsuab.ru
    Pavel A. AKIMOV2, akimovpa@mgsu.ru
    Nikita V. MESCHEULOV1, ckm.tsuab@mail.ru
    1 Tomsk State University of Architecture and Building, Solyanaya ploschad', 2, Tomsk 634003, Russian Federation
    2 Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    Abstract. In the article, examples are considered of the formation of calculation schemes of additional connections that targetly regulate the frequency spectrum of natural oscillations of elastic systems with a finite number of degrees of mass freedom, in which the directions of motion are parallel, but do not lie in the same plane. Some special properties of such target connections are revealed. When forming the computational scheme of the target connection, the material consumption for its creation is minimized, and some design limitations are taken into account. Particular attention is paid to the modification of target links, when, during their formation, it becomes necessary to shift the computational scheme.
    Keywords: natural oscillation frequency, form of natural oscillations, generalized target additional connection, stiffness coefficients, calculation examples
  • REFERENCES
    1. Lyakhovich L. S., Akimov P. A. About development of computational schemes of some additional constraints for elastic systems. Part 1: Theoretical foundations. Promyshlennoe i grazhdanskoe stroitel'stvo, 2022, no. 9, pp. 4-10. (In Russ.). doi: 10.33622/0869-7019.2022.09.04-10
    2. Koreneva E. B. Analysis of combined plates with allowance for contact with elastic foundation [Расчет комбинированных плит с учетом контакта с упругим основанием]. International Journal for Computational Civil and Structural Engineering, 2019, vol. 15, iss. 4, pp. 83-87.
    3. Koreneva E. B. Unsymmetric oscillations of anisotropic plate having an additional mass [Несимметричные колебания анизотропной пластины с дополнительной массой]. International Journal for Computational Civil and Structural Engineering, 2021, vol. 17, iss. 1, pp. 48-54.
    4. Koreneva E. B., Grosman V. R. Equation decomposition method for solving of problems of statics, vibrations and stability of thin-walled constructions [Метод декомпозиции уравнений для решения задач статики, вибраций и устойчивости тонкостенных конструкций]. International Journal for Computational Civil and Structural Engineering, 2020, vol. 16, iss. 2, pp. 63-70.
    5. Lyakhovich L. S., Akimov P. A. Aimed control of the frequency spectrum of eigenvibrations of elastic plates with a finite number of degrees of freedom of masses by superimposing additional constraints [Прицельное регулирование спектра частот собственных колебаний упругих пластин с конечным числом степеней свободы масс путем наложения дополнительных связей]. International Journal for Computational Civil and Structural Engineering, 2021, vol. 17, iss. 2, pp. 76-82.
    6. Manuylov G. A., Kosytsyn S. B., Grudtsyna I. E. Influence of buckling forms interaction of stiffened plate bearing capacity [Влияние форм выпучивания на несущую способность подкрепленной пластины]. International Journal for Computational Civil and Structural Engineering, 2020, vol. 16, iss. 2, pp. 83-93.
    7. Shitikova M. V., Kandu V. V. Analysis of forced vibrations of nonlinear plates in a viscoelastic medium under the conditions of the different combinational internal resonances [Численный анализ вынужденных нелинейных колебаний пластинок в вязкоупругой среде при наличии комбинационного резонанса]. International Journal for Computational Civil and Structural Engineering, 2019, vol. 15, iss. 3, pp. 131-148.
    8. Shitikova M. V., Krusser A. I. Force driven vibrations of nonlinear plates on a viscoelastic Winkler foundation under the harmonic moving load [Анализ вынужденных нелинейных колебаний пластинки на вязкоупругом основании Винклера от действия подвижной нагрузки]. International Journal for Computational Civil and Structural Engineering, 2021, vol. 17, iss. 4, pp. 161-180.
    9. Potapov A. N. The elastoplastic calculation of frames using the displacement method [Упругопластический расчет рам методом перемещений]. International Journal for Computational Civil and Structural Engineering, 2019, vol. 15, iss. 3, pp. 120-130.
    10. Akimov P. A., Lyahovich L. S. Precision control for eigen-frequency of elastic plates with finite number of mass degrees of freedom by using additional generalized connections and kinematic devices. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta, 2021, vol. 23, no. 4, pp. 57-67. (In Russ.).
    11. Giterman D. M., Lyahovich L. S., Nudel'man Ja. L. Algorithm for creating resonantly safe zones by imposing additional bonds. Dinamika i prochnost' mashin, iss. 39. Kharkov, Vishha shkola Publ., 1984, pp. 63-69. (In Russ.).
    12. Lyahovich L. S. Osobye svojstva optimal'nyh sistem i osnovnye napravlenija ih realizacii v metodah rascheta sooruzhenij [Special properties of optimal systems and the main directions of their implementation in the methods of structural analysis]. Tomsk, TGASU Publ., 2009. 372 p. (In Russ.).
    13. Lyahovich L. S., Maletkin O. Ju. On targeted control of natural frequencies of elastic systems. Izvestija vuzov. Stroitel'stvo i arhitektura, 1990, no. 1, pp. 113-117. (In Russ.).
    14. Nudel'man Ja. L., Lyahovich L. S., Giterman D. M. On the most pliable bonds of the greatest rigidity. Voprosy prikladnoj мehaniki i matematiki. Tomsk, TGU Publ., 1981, pp. 113-126. (In Russ.).
    15. An H. H., Jung M. H., Kim N. H. et al. Study on the automated size optimization and structural analysis program for composite lattice structures [Исследование программы автоматизированной оптимизации размеров и расчета решетчатых конструкций из композитных материалов]. Transactions of the Korean Society of Mechanical Engineers, 2022, vol. 66, iss. 3, pp. 77-83.
    16. Dmitrieva T., Ulambayar Kh. Algorithm for building structures optimization based on Lagrange functions [Алгоритм оптимизации строительных конструкций на основе функций Лагранжа]. Magazine of Civil Engineering, 2022, vol. 109, iss. 1, p. 10910.
    17. Hinz M., Magoules F., Rozanova-Pierrat A. et al. On the existence of optimal shapes in architecture [О существовании оптимальных форм в архитектуре]. Applied Mathematical Modelling, 2021, vol. 94, pp. 676-687.
    18. Pan C., Han Y., Lu J. Design and optimization of lattice structures: a review [Проектирование и оптимизация решетчатых конструкций: обзор]. Applied Sciences, 2020, vol. 10, iss. 18, pp. 1-36.
    19. Peleshko I. D., Yurchenko V. V. Parametric optimization of metal rod structures using the modified gradient projection method [Параметрическая оптимизация металлических стержневых конструкций с использованием модифицированного метода проекции градиента]. Internal Applied Mechanics, 2021, vol. 57, iss. 4, pp. 440-454.
    20. Senatore G., Reksowardojo A. P. Force and shape control strategies for minimum energy adaptive structures [Стратегии управления силой и формой для адаптивных конструкций с минимальной энергией]. Frontiers in Build Environment, 2020, vol. 6, p. 105.
    21. Xu Y., Chen H., Wang X. Buckling analysis and configuration optimum design of grid-stiffened composite panels [Исследование потери устойчивости и конфигурации оптимальной конструкции композитных панелей с ребрами жесткости]. AIAA Journal, 2020, vol. 58, iss. 8, pp. 3653-3664.
    22. Yankovskaya Y., Merenkov A. Problems of optimization of design solutions of residential structures and their elements [Проблемы оптимизации конструктивных решений конструкций жилых зданий и их элементов]. Lecture Notes in Civil Engineering, 2022, vol. 227, pp. 339-350.
    23. Yurchenko V. V., Peleshko I. D. Searching for optimal prestressing of steel bar structures based on sensitivity analysis [Поиск оптимального предварительного напряжения стальных стержневых конструкций на основе анализа чувствительности]. Archives of Civil Engineering, 2020, vol. 66, iss. 3, pp. 526-540.
  • For citation: Lyakhovich L. S., Akimov P. A., Mescheulov N. V. About Development of Computational Schemes of Some Additional Constraints for Elastic Systems. Part 2: Samples of Analysis. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2022, no. 9, pp. 11-19. (In Russ.). doi: 10.33622/0869-7019.2022.09.11-19


BACK