Published since 1923
DOI: 10.33622/0869-7019
Russian Science Citation Index (RSCI) на платформе Web of Science
  • BASES AND FOUNDATIONS, UNDERGROUND STRUCTURES
  • Filtration In Porous Medium With Two Capture Mechanisms
  • UDC 624.131.6
    doi: 10.33622/0869-7019.2022.07.48-53
    Liudmila I. KUZMINA1, lkuzmina@hse.ru
    Yuri V. OSIPOV2, yuri-osipov@mail.ru
    Marina G. SOSEDKA3, sosedkamarina115@yandex.ru
    1 National Research University Higher School of Economics (HSE), ul. Myasnitskaya, 20, Moscow 101000, Russian Federation
    2 Moscow State University of Civil Engineering (National Research University), Yaroslavskoe shosse, 26, Moscow 129337, Russian Federation
    3 Plechanov Russian University of Economics, Stremyanny pereulok, 36, Moscow 117997, Russian Federation
    Abstract. To create waterproof walls in the ground, a liquid solution is pumped into the porous rock, which is filtered in the pores of the rock, and, solidifying, clogs them. During long-term filtration, some particles are retained on the framework of the porous medium and form a stable precipitate. A model is considered with two mechanisms of particle capture acting simultaneously (particle blocking at the entrance of narrow pores and adhesion to the walls of wide pores). Each capture mechanism has its own filtration function. The problem is reduced to a standard model with one implicitly defined aggregated filtration function. Approximate models with explicit filtering functions are studied, which make it possible to simplify the calculation of the solution. The linearly constant filtration function admits an explicit solution, but it has a kink and does not optimally approximate the aggregated filtration function. The hyperbolic filtration function contains a free parameter, the value of which is selected from the condition of the best approximation to the aggregated function. It is shown that the solution of a model with a hyperbolic filtration function is closer to the exact solution than the solution of a model with a linear constant function.
    Keywords: filtration in a porous medium, suspended and deposited particles, particle capture mechanism, hyperbolic filtration function, mathematical filtration model
  • REFERENCES
    1. Zhou Z., Zang H., Wang S., Du X., Ma D., Zhang J. Filtration behaviour of cement-based grout in porous media [Фильтрационное поведение раствора на цементной основе в пористых средах]. Transport in Porous Media, 2018, no. 125, pp. 435-463.
    2. Zhu G., Zhang Q., Liu R., Bai J., Li W., Xiao Feng X. Experimental and numerical study on the permeation grouting diffusion mechanism considering filtration effects [Экспериментальное и численное исследование диффузионного механизма проникания укрепителя с учетом эффектов фильтрации]. Geofluids, 2021, vol. 2021, pp. 6613990.
    3. Tsuji M., Kobayashi S., Mikake S., Sato T., Matsui H. Post-grouting experiences for reducing groundwater inflow at 500 m depth of the Mizunami underground research laboratory, Japan. [Опыт заливки укрепителем для уменьшения притока подземных вод на глубине 500 м в подземной исследовательской лаборатории Мидзунами, Япония]. Procedia Engineering, 2017, no. 191, pp. 543-550.
    4. Chrysikopoulos C. V., Sotirelis N. P., Kallithrakas-Kontos N. G. Cotransport of graphene oxide nanoparticles and kaolinite colloids in porous media [Совместный перенос наночастиц оксида графена и коллоидов каолинитов в пористых средах]. Transport in Porous Media, 2017, no. 119, pp. 181-204.
    5. Johnson W. P., Rasmuson A., Pazmiсo E., Hilpert M. Why variant colloid transport behaviors emerge among identical individuals in porous media when colloid-surface repulsion exists? [Почему у идентичных веществ в пористой среде возникают варианты поведения при транспортировке коллоидов, когда существует отталкивание коллоидной поверхности?]. Environmental Science & Technology, 2018, no. 52, pp. 7230-7239.
    6. Civan F. Reservoir formation damage [Повреждение пласта-коллектора]. USA, Gulf Professional Publishing, Burlington, 2014. 741 p.
    7. Mays D. C., Hunt J. R. Hydrodynamic and chemical factors in clogging by montmorillonite in porous media. [Гидродинамические и химические факторы закупоривания монтмориллонитом пористых сред]. Environmental Science and Technology, 2007, no. 41, pp. 5666-5671.
    8. Bedrikovetsky P. Mathematical theory of oil and gas recovery with applications to ex-USSR oil and gas fields [Математическая теория добычи нефти и газа с приложениями к месторождениям нефти и газа бывшего СССР]. Springer Science & Business Media, vol. 4, 2013. 575 p.
    9. Bedrikovetsky P. Upscaling of stochastic micro model for suspension transport in porous media [Масштабирование стохастической микромодели транспорта взвеси в пористой среде]. Transport in Porous Media, 2008, no. 75, pp. 335-369.
    10. Santos A., Bedrikovetsky P., Fontoura S. Analytical micro model for size exclusion: Pore blocking and permeability reduction [Аналитическая микромодель для размерного механизма захвата: закупорка пор и снижение проницаемости]. Journal of Membrane Science, 2008, no. 308, pp 115-127.
    11. Galaguz Yu. P., Kuzmina L. I., Osipov Yu. V. Problem of deep bed filtration in a porous medium with the initial deposit [Задача фильтрации суспензии в пористой среде с осадком]. Fluid Dynamics, 2019, no. 54(1), pp. 85-97.
    12. Kuzmina L. I., Nazaikinskii V. E., Osipov Y. V. On a deep bed filtration problem with finite blocking time [О задаче глубинной фильтрации с конечным временем блокировки]. Russian Journal of Mathematical Physics, 2019, no. 26, pp. 130-134.
    13. Herzig J. P., Leclerc D. M., le Goff P. Flow of suspensions through porous media-application to deep filtration [Поток суспензии через пористую среду - применение для глубинной фильтрации]. Industrial & Engineering Chemistry Research, 1970, no. 62(8), pp. 8-35.
    14. Vyazmina E. A., Bedrikovetskii P. G., Polyanin A. D. New classes of exact solutions to nonlinear sets of equations in the theory of filtration and convective mass transfer [Новые классы точных решений нелинейных систем уравнений теории фильтрации и конвективного массообмена]. Theoretical Foundations of Chemical Engineering, 2007, no. 41(5), pp. 556-564.
    15. Kuzmina L., Osipov Y. Particle capture in porous medium [Захват частиц в пористой среде]. IOP Conference Series: Materials Science and Engineering, 2019, no. 661, pp. 012122.
    16. Bradford S. A., Torkzaban S., Shapiro A. A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media [Теоретический анализ прилипания и осаждения коллоидов в химически неоднородных пористых средах]. Langmuir, 2013, no. 29, pp. 6944- 6952.
    17. Yuan H., Shapiro A. A. A mathematical model for non-monotonic deposition profiles in deep bed filtration systems [Математическая модель немонотонных профилей осадка в системах глубинной фильтрации]. Chemical Engineering Journal, 2011, no. 166, pp. 105-115.
    18. Nurgul S., Beket K., Aigul M., Galymzhan K.,Raigul T. Numerical methods for solving improper problems of filtration theory [Численные методы решения некорректных задач теории фильтрации]. Journal of Applied Engineering Science, 2021, no. 19(1), pp. 98-108.
    19. Zhang H., Malgaresi G. V. C., Bedrikovetsky P. Exact solutions for suspension-colloidal transport with multiple capture mechanisms [Точные решения для суспензионно-коллоидного переноса с несколькими механизмами захвата]. International Journal of Non-Linear Mechanics, 2018, no. 105, pp. 27-42.
    20. Altoe J. E., Bedrikovetsky P. G., Siqueira A. G., de Souza A. L., Shecaira F. Correction of basic equations for deep bed filtration with dispersion [Корректировка основных уравнений глубинной фильтрации с дисперсией]. Journal of Petroleum Science and Engineering, 2006, no. 51, pp. 68-84.
    21. Osipov Yu., Safina G., Galaguz Yu. Calculation of the filtration problem by finite differences methods [Расчет задачи фильтрации методами конечных разностей]. MATEC Web of Conferences, 2018, no. 251, pp. 04021.
    22. Osipov Yu. V., Safina G. L., Galaguz Yu. P. Filtration model with multiple particle capture [Модель фильтрации с несколькими механизмами захвата частиц]. IOP Conference Series: Journal of Physics, 2020, no. 1425, pp. 012110.
    23. Safina G. Calculation of retention profiles in porous medium [Расчет профилей осадка в пористой среде]. Lecture Notes in Civil Engineering, 2021, no. 170, pp. 21-28.
  • For citation: Kuzmina L. I., Osipov Yu. V., Sosedka M. G. Filtration in Porous Medium With Two Capture Mechanisms. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering], 2022, no. 7, рp. 48-53. (In Russ.) doi: 10.33622/0869-7019.2022.07.48-53


BACK